Single-Trial Event-Related Potential Analysis for Brain- Computer Interfaces
نویسندگان
چکیده
Different types of mental activity are utilised as an input in Brain-Computer Interface (BCI) systems. One such activity type is based on Event-Related Potentials (ERPs). The characteristics of ERPs are not visible in single-trials, thus averaging over a number of trials is necessary before the signals become usable. An improvement in ERP-based BCI operation and system usability could be obtained if the use of single-trial ERP data was possible. The method of Independent Component Analysis (ICA) can be utilised to separate single-trial recordings of ERP data into components that correspond to ERP characteristics, background electroencephalogram (EEG) activity and other components with non-cerebral origin. Choice of specific components and their use to reconstruct “denoised” single-trial data could improve the signal quality, thus allowing the successful use of single-trial data without the need for averaging. This paper assesses single-trial ERP signals reconstructed using a selection of estimated components from the application of ICA on the raw ERP data. Signal improvement is measured using Contrast-To-Noise measures. It was found that such analysis improves the signal quality in all single-trials.
منابع مشابه
Let's face it, from trial to trial: Comparing procedures for N170 single-trial estimation
The estimation of event-related single trial EEG activity is notoriously difficult but is of growing interest in various areas of cognitive neuroscience, such as multimodal neuroimaging and EEG-based brain computer interfaces. However, an objective evaluation of different approaches is lacking. The present study therefore compared four frequently-used single-trial data filtering procedures: raw...
متن کاملSingle-trial P300 Classification using PCA with LDA, QDA and Neural Networks
The P300 event-related potential (ERP), evoked in scalp-recorded electroencephalography (EEG) by external stimuli, has proven to be a reliable response for controlling a BCI. The P300 component of an event related potential is thus widely used in brain-computer interfaces to translate the subjects’ intent by mere thoughts into commands to control artificial devices. The main challenge in the cl...
متن کاملThesis Single-trial P300 Classification Using Pca with Lda and Neural Networks
SINGLE-TRIAL P300 CLASSIFICATION USING PCA WITH LDA AND NEURAL NETWORKS A brain-computer interface (BCI) is a device that uses brain signals to provide a nonmuscular communication channel for motor-impaired patients. It is especially targeted at patients with ’locked-in’ syndrome, a condition where the patient is awake and fully aware but cannot communicate with the outside world due to complet...
متن کاملSpatial-Temporal Feature Analysis on Single-Trial Event Related Potential for Rapid Face Identification
The event-related potential (ERP) is the brain response measured in electroencephalography (EEG), which reflects the process of human cognitive activity. ERP has been introduced into brain computer interfaces (BCIs) to communicate the computer with the subject's intention. Due to the low signal-to-noise ratio of EEG, most ERP studies are based on grand-averaging over many trials. Recently singl...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008